2009 IEEE International Conference on Bioinformatics and Biomedicine
Download PDF

Abstract

Automatically classifying ECG recordings for Malignant Ventricular Arrhythmia is fraught with several difficulties. Even normal ECG signals exhibit only quasi-periodic nature, and contain various irregularities. The key to more accurate detection is the use of position, and amount of local singularities in the signals.In this paper, we propose a Holder-SVM detection algorithm using a novel hybrid arrangement of binary and multiclass SVMs designed to take care of class imbalance rampant in biomedical signals. As a result, we significantly reduce the number of false negatives – patients falsely classified as normal. We used the MIT-BIH Arrhythmia database for even different arrhythmias. We compare our hybrid SVM with a suitable conventional SVM, and show better results.We also use the new arrangement for features proposed earlier, and demonstrate the gain in accuracy. Our concept of hybrid SVM is applicable to a wide variety of multiclass classification problems.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles