2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Download PDF

Abstract

The extraction of morphometric features from images of biological structures is a crucial task for the study of several diseases. Particularly, concerning neuropathies, the state of the myelination process is vital for neuronal integrity and may be an indicator of the disease type and state. Few approaches exist to automatically analyse nerve morphometry and assist researchers in this time consuming task. The aim of this work is to develop an algorithm to detect axons and myelin contours in myelinated fibres of sciatic nerve images, thus allowing the automated assessment and quantification of myelination through the measurement of the g-ratio. The application of a directional gradient together with an active contour algorithm was able to effectively and accurately determine the degree of myelination in an imagiological dataset of sciatic nerves. It was obtained an average error of 1.80%, in comparison with the manual annotation performed by the specialist in all dataset.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles