2007 IEEE 23rd International Conference on Data Engineering Workshop
Download PDF

Abstract

The problem of building Recommender Systems has attracted considerable attention in recent years, but most recommender systems are designed for recommending items for individuals. The aim of this paper is to automatically recommend and rank a list of new items to a group of users. The proposed model can be considered as a collaborative Bayesian network-based group recommender system, where the group's rates are computed from past voting patterns of other users with similar tastes. The use of Bayesian networks allows us to obtain an intuitive representation of the mechanisms that govern the relationships between the group members.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles