Abstract
The aim of this work is to estimate the medication adherence of patients with heart failure through the application of a data mining approach on a dataset including information from saliva and breath biomarkers. The method consists of two stages. In the first stage, a model for the estimation of adherence risk of a patient, exploiting anamnestic and instrumental data, is applied. In the second stage, the output of the model, accompanied with data from saliva and breath biomarkers, is given as input to a classification model for determining if the patient is adherent, in terms of medication. The method is evaluated on a dataset of 29 patients and the achieved accuracy is 96%.