Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07)
Download PDF

Abstract

We study semidefinite programming relaxations of Vertex Cover arising from repeated applications of the LS+ "lift-and-project" method of Lovasz and Schrijver starting from the standard linear programming relaxation. Goemans and Kleinberg prove that after one round of LS+ the integrality gap remains arbitrarily close to 2. Charikar proves an integrality gap of 2, later strengthened by Hatami, Magen, and Markakis, for stronger relaxations that are, however, incomparable with two rounds of LS+. Subsequent work by Georgiou, Magen, Pitassi, and Tourlakis shows that the integrality gap remains 2 - \varepsilon after \Omega(\sqrt {\frac{{\log n}} {{\log \log n}}} ) rounds [?]. We prove that the integrality gap remains at least 7/6 - \varepsilon after c_{\varepsilon}n rounds, where n is the number of vertices and c_\varepsilon \ge 0 is a constant that depends only on \varepsilon.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles