2017 IEEE International Conference on Cluster Computing (CLUSTER)
Download PDF

Abstract

Burst buffers tolerate I/O spikes in High-Performance Computing environments by using a non-volatile flash technology. Burst buffers are commonly located between parallel file systems and compute nodes, handling bursty I/Os in the middle. In this architecture, burst buffers are shared resources. The performance of an SSD is significantly reduced when it is used excessively because of garbage collection, and we have observed that SSDs in a burst buffer become slow when many users simultaneously use the burst buffer. To mitigate the performance problem, we propose a new user-level I/O isolation framework in a High-Performance Computing environment using a multi-streamed SSD. The multi-streamed SSD allocates the same flash block for I/Os in the same stream. We assign a different stream to each user; thus, the user can use the stream exclusively. To evaluate the performance, we have used open-source supercomputing workloads and I/O traces from real workloads in the Cori supercomputer at the National Energy Research Scientific Computing Center. Via user-level I/O isolation, we have obtained up to a 125% performance improvement in terms of I/O throughput. In addition, our approach reduces the write amplification in the SSDs, leading to improved SSD endurance. This user-level I/O isolation framework could be applied to deployed burst buffers without having to make any user interface changes.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles