2013 IEEE Frontiers in Education Conference (FIE)
Download PDF

Abstract

An analysis of hiring patterns showed emerging trends: the complexity of information technology (IT) is shifting from development to post-deployment and integration needed for services. Given the complexity of deployed service systems, generated big data, and the national dialogue on educating engineers, we asked ourselves related questions. Do our graduate students have evaluation skills needed to work at the most advanced level of Bloom's taxonomy? Can they learn to frame and solve the problems within complex industry environments while applying the current research? How do we structure a graduate curriculum and an environment that provides experiences in innovation within the constraints of the academic calendar? Here we present an interdisciplinary curriculum comprised of three components: a service interaction blueprint for framing the industry problem, agile principles focusing on aspects of the solution, and Christensen's theory-building to frame the next iteration of research. The environment for industry problems was created through an National Science Funded Industry & University Cooperative Research Center. The feedback from a pilot graduate-level class is positive and provides insights for further research. We show through feedback discussions that it is possible to have translational activity at the industry-university enterprise boundary resourced in by advanced experiential learning.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles