Abstract
New upper bounds are given for the measure problem of V. Klee (1977) that significantly improve the previous bounds for dimensions greater than 2. An O(n/sup d/2/ log n, n) time-space upper bound to compute the measure of a set of n boxes in Euclidean d-space is obtained. The solution requires several novel ideas including application of the inclusion/exclusion principle, the concept of trellises, streaming, and a partition of d-space.