2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)
Download PDF

Abstract

We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call unsatisfiability certificate. This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we prove exponential lower bounds for random k-CNFs, where k is the logarithm of the number of variables, and for the Weak Bit Pigeon Hole Principle. Furthermore, we prove a monotone variant of a hypothesis of Feige [12]. We give a superpolynomial lower bound on monotone real circuits that approximately decide the satisfiability of k-CNFs, where k = ω(1). For k ≈ log n, the lower bound is exponential.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles