2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)
Download PDF

Abstract

As modern GPUs rely partly on their on-chip memories to counter the imminent off-chip memory wall, the efficient use of their caches has become important for performance and energy. However, optimising cache locality system-atically requires insight into and prediction of cache behaviour. On sequential processors, stack distance or reuse distance theory is a well-known means to model cache behaviour. However, it is not straightforward to apply this theory to GPUs, mainly because of the parallel execution model and fine-grained multi-threading. This work extends reuse distance to GPUs by modelling: 1) the GPU's hierarchy of threads, warps, threadblocks, and sets of active threads, 2) conditional and non-uniform latencies, 3) cache associativity, 4) miss-status holding-registers, and 5) warp divergence. We implement the model in C++ and extend the Ocelot GPU emulator to extract lists of memory addresses. We compare our model with measured cache miss rates for the Parboil and PolyBench/GPU benchmark suites, showing a mean absolute error of 6% and 8% for two cache configurations. We show that our model is faster and even more accurate compared to the GPGPU-Sim simulator.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles