2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security (CSS) and 2015 IEEE 12th International Conf on Embedded Software and Systems (ICESS)
Download PDF

Abstract

Simulation of biological systems are computationally demanding due to the large scale reaction networks of bacterial cells. This scalability issue escalates, in particular, when bacterial colonies, formed by many individual cells, are simulated. Agent-based modelling environments on parallel architectures, such as the FLAME (Flexible Large-scale Modelling Environment) framework, are good candidates to simulate such systems, but due to the complex nature of cellular systems more advance technology is needed. In this paper, we utilise FLAME GPU, extending FLAME with a high performance graphics processing unit, to simulate a pulse generator, a typical multicellular synthetic biology system. This system is specified using a membrane computing model. We also illustrate the performance improvement of FLAME GPU over FLAME.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles