Acoustics, Speech, and Signal Processing, IEEE International Conference on
Download PDF

Abstract

Shows how the multi-state time delay neural network (MS-TDNN), which is already used successfully in continuous speech recognition tasks, can be applied both to online single character and cursive (continuous) handwriting recognition. The MS-TDNN integrates the high accuracy single character recognition capabilities of a TDNN with a non-linear time alignment procedure (dynamic time warping algorithm) for finding stroke and character boundaries in isolated, handwritten characters and words. In this approach each character is modelled by up to 3 different states and words are represented as a sequence of these characters. The authors describe the basic MS-TDNN architecture and the input features used in the paper, and present results (up to 97.7% word recognition rate) both on writer dependent/independent, single character recognition tasks and writer dependent, cursive handwriting tasks with varying vocabulary sizes up to 20000 words.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!