Abstract
This article presents an interactive hand shape recognition user interface for American Sign Language (ASL) finger-spelling. The system makes use of a Microsoft Kinect device to collect appearance and depth images, and of the OpenNI+NITE framework for hand detection and tracking. Hand-shapes corresponding to letters of the alphabet are characterized using appearance and depth images and classified using random forests. We compare classification using appearance and depth images, and show a combination of both lead to best results, and validate on a dataset of four different users. This hand shape detection works in real-time and is integrated in an interactive user interface allowing the signer to select between ambiguous detections and integrated with an English dictionary for efficient writing.