2017 IEEE International Conference on Computer Vision Workshop (ICCVW)
Download PDF

Abstract

This paper presents a unified deep learning framework to recover hyperspectral images from spectrally undersampled projections. Specifically, we investigate two kinds of representative projections, RGB and compressive sensing (CS) measurements. These measurements are first upsampled in the spectral dimension through simple interpolation or CS reconstruction, and the proposed method learns an end-to-end mapping from a large number of up-sampled/groundtruth hyperspectral image pairs. The mapping is represented as a deep convolutional neural network (CNN) that takes the spectrally upsampled image as input and outputs the enhanced hyperspetral one. We explore different network configurations to achieve high reconstruction fidelity. Experimental results on a variety of test images demonstrate significantly improved performance of the proposed method over the state-of-the-arts.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles