Proceedings of Sixth International Conference on Document Analysis and Recognition
Download PDF

Abstract

Abstract: This paper proposes a new corrective learning algorithm and evaluates the performance by handwritten numeral recognition test. The algorithm generates a mirror image of a pattern that belongs to one class of a pair of confusing classes and utilizes it as a learning pattern of the other class. This paper also studies on how to extract confusing patterns within a certain margin of a decision boundary to generate enough number of mirror images, and how to perform an effective mirror image compensation to in-crease the margin. Recognition accuracies of the minimum distance classifier and the projection distance method were improved from 93.17% to 98.38% and from 99.11% to 99.41% respectively in the recognition test for handwritten numeral database IPTP CD-ROM1.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!