2013 12th International Conference on Document Analysis and Recognition (ICDAR)
Download PDF

Abstract

Recent HMM-based approaches to handwritten word spotting require large amounts of learning samples and mostly rely on a prior segmentation of the document. We propose to use Bag-of-Features HMMs in a patch-based segmentation-free framework that are estimated by a single sample. Bag-of-Features HMMs use statistics of local image feature representatives. Therefore they can be considered as a variant of discrete HMMs allowing to model the observation of a number of features at a point in time. The discrete nature enables us to estimate a query model with only a single example of the query provided by the user. This makes our method very flexible with respect to the availability of training data. Furthermore, we are able to outperform state-of-the-art results on the George Washington dataset.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles