2019 IEEE International Conference on Multimedia and Expo (ICME)
Download PDF

Abstract

Video object segmentation is a challenging task with wide variety of applications. Although recent CNN based methods have achieved great performance, they are far from being applicable for real time applications. In this paper, we propose a propagation based video object segmentation method in compressed domain to accelerate inference speed. We only extract features from I-frames by the traditional deep segmentation network. And the features of P-frames are propagated from I-frames. Apart from feature warping, we propose two effective modules in the process of feature propagation to ensure the representation ability of propagated features in terms of appearance and location. Residual supplement module is used to supplement appearance information lost in warping, and spatial attention module mines accurate spatial saliency prior to highlight the specified object. Compared with recent state-of-the-art algorithms, the proposed method achieves comparable accuracy while much faster inference speed.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles