Proceedings of the 2003 International Conference on Machine Learning and Cybernetics
Download PDF

Abstract

Selection of optimal bands is an effective means to mitigate the curse of dimensionality for remotely sensed data, which has assumed growing importance with the availability of hyperspectral remote sensing data. For the merits of genetic algorithms in solving problems of combinatorial optimization, by using special coding mechanism and fitness function, this paper develops an approach to fast search of optimal bands for hyperspectral image data classification. Experiments demonstrate that this method can automatically obtain the best combination with much faster speed as compared with a conventional overall search method, and that by comparison, three-band combination search process exhibits much more efficiency in comparison with conventional methods than two-band combination does, which indicates that with more bands in each combination, more obvious the efficiency of this method is. By using the selected optimal bands for maximum likelihood classification of the three vegetation types in the experiment area, satisfied result is achieved. Because of no knowledge of interesting objects is required to use this method, it has the merit of being suitable for unknown areas.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles