Pattern Recognition, International Conference on
Download PDF

Abstract

A relationship between generalization error and training samples in kernel regressors is discussed in this paper. The generalization error can be decomposed into two components. One is a distance between an unknown true function and an adopted model space. The other is a distance between an estimated function and the orthogonal projection of the unknown true function onto the model space. In our previous work, we gave a framework to evaluate the first component. In this paper, we theoretically analyze the second one and show that a larger set of training samples usually causes a larger generalization error.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles