Abstract
Domain adaptation algorithms that handle shifts in the distribution between training and testing data are receiving much attention in computer vision. Recently, a Grassmann manifold-based domain adaptation algorithm that models the domain shift using intermediate subspaces along the geodesic connecting the source and target domains was presented in [6]. We build upon this work and propose replacing the step of concatenating feature projections on a very few sampled intermediate subspaces by directly integrating the distance between feature projections along the geodesic. The proposed approach considers all the intermediate subspaces along the geodesic. Thus, it is a more principled way of quantifying the cross-domain distance. We present the results of experiments on two standard datasets and show that the proposed algorithm yields favorable performance over previous approaches.