2020 25th International Conference on Pattern Recognition (ICPR)
Download PDF

Abstract

The Softmax prediction function is widely used to train Deep Convolutional Neural Networks (DCNNs) for large-scale face recognition and other applications. The limitation of the softmax activation is that the resulting probability distribution always has a full support. This full support leads to larger intraclass variations. In this paper, we formulate a novel loss function, called Angular Sparsemax for face recognition. The proposed loss function promotes sparseness of the hypotheses prediction function similar to Sparsemax [1] with Fenchel-Young regularisation. By introducing an additive angular margin on the score vector, the discriminatory power of the face embedding is further improved. The proposed loss function is experimentally validated on several databases in terms of recognition accuracy. Its performance compares well with the state of the art Arcface loss.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles