Neural Networks, IEEE - INNS - ENNS International Joint Conference on
Download PDF

Abstract

With the advent of DNA microarrays, it is now possible to use the microarrays data for tumor classification. Yet previous works have not use the nonnegative information of gene expression data. In this paper, we propose a new method for tumor classification using gene expression data. In this method, we first select genes using nonnegative matrix factorization (NMF) and sparse NMF (SNMF). Then we extract features of the selected gene data by virtue of NMF and SNMF. At last, support vector machines (SVM) was applied to classify the tumor samples based on the extracted features. To better fit for classification aim, a modified SNMF algorithm is also proposed. The experimental results on three microarray datasets show that the method is efficient and feasible.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles