Abstract
Internet of Things (IoT) has enabled several applications related to data analytics. In this paper, an intuitive method for optimizing activity detection data is presented. Further applications include exploring detection accuracies of physical activities such as walking intensity and movement on stairs. This method utilizes different Microcontroller Units (MCUs) with embedded sensors which are used for activity detection. Additionally, this method also incorporates supervised learning - more specifically the Fine Gaussian SVM, to generate a predictive model for activity optimization.