Abstract
We describe an efficient and innovative parallel tiled algorithm for solving symmetric indefinite systems on multicore architectures. This solver avoids pivoting by using a multiplicative preconditioning based on symmetric randomization. This randomization prevents the communication overhead due to pivoting, is computationally inexpensive and requires very little storage. Following randomization, a tiled factorization is used that reduces synchronization by using static or dynamic scheduling. We compare Gflop/s performance of our solver with other types of factorizations on a current multicore machine and we provide tests on accuracy using LAPACK test cases.