Abstract
Quantum simulation proposes to use future quantum computers to calculate properties of quantum systems. In the context of chemistry, the target is the electronic structure problem: determination of the electronic energy given the nuclear coordinates of a molecule. Since 2006 we have been studying quantum approaches to quantum chemical problems, and such approaches must face the challenges of high, but fixed, precision requirements, and fermion antisymmetry. I will describe algorithmic and experimental developments in this area. I will also review work using some techniques developed for quantum chemistry on quantum computers for light front simulations of quantum field theory.