Intelligent Systems Design and Applications, International Conference on
Download PDF

Abstract

This paper proposes a fully unsupervised anomaly detection strategy in hyperspectral imagery based on mixture learning. Anomaly detection is conducted by adopting a Gaussian Mixture Model (GMM) to describe the statistics of the background in hyperspectral data. One of the key tasks in the application of mixture models is the specification in advance of the number of GMM components, the determination of which is essential and strongly affects detection performance. In this work, GMM parameters estimation was performed through a variation of the well-known Expectation Maximization (EM) algorithm that was developed within a Bayesian framework. Specifically, the adopted mixture learning technique incorporates a built-in mechanism for automatically assessing the number of components during the parameter estimation procedure. Then, Generalized Likelihood Ratio Test (GLRT) is considered for detecting anomalies. Real hyperspectral imagery acquired by an airborne sensor is used for experimental evaluation of the proposed anomaly detection strategy.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles