Abstract
Knowledge of emerging and declining trends and their potential future course is highly relevant in many application domains, particularly in corporate strategy and foresight. The early awareness of trends allows reacting to market, political, and societal changes and challenges at an appropriate time. In our previous works, we presented approaches for the early identification and analysis of emerging trends. Although our previous approaches are detecting emerging trends appropriately, they lack the ability to predict the potential future course of a trend or technology. We present in this work a novel Visual Analytics approach for forecasting emerging trends that combines interactive visualizations with machine learning techniques and statistical approaches to detect, analyze, and predict trends from textual data. We extend our previous work on analyzing technological trends from text and propose an advanced approach that includes forecasting through hybrid techniques consisting of neural networks and established statistical methods. Our approach offers insights from enormous data sets and the potential future course of trends based on their occurrence in textual data. We contribute with a novel approach for identifying and forecasting trends, a hybrid forecasting method to predict trends from text, and interactive visualization techniques on macro level, micro level, and monitoring topics of interest.