Abstract
A communication avoiding (CA) multigrid preconditioned conjugate gradient method (CAMGCG) is applied to the pressure Poisson equation in a multiphase CFD code JUPITER, and its computational performance and convergence property are compared against CA Krylov methods. A new geometric multigrid preconditioner is developed using a preconditioned Chebyshev iteration smoother, in which no global reduction communication is needed, halo data communication is reduced by a mixed precision approach, and eigenvalues are computed using the CA Lanczos method. In the JUPITER code, the CAMGCG solver has robust convergence properties regardless of the problem size, and shows both communication reduction and convergence improvement, leading to higher performance gain than CA Krylov solvers, which achieve only the former. The CAMGCG solver is applied to extreme scale multiphase CFD simulations with ~ 90 billion DOFs, and it is shown that compared with a preconditioned CG solver, the number of iterations, and thus, All_Reduce is reduced to ~ 1/800, and ~ 11.6× speedup is achieved with keeping excellent strong scaling up to 8,000 KNLs on the OakforestPACS.