Abstract
The growth of low-end hardware has led to a proliferation of ma-chine learning-based services in edge applications. These applications gather contextual information about users and provide some services, such as personalized offers, through a machine learning (ML) model. A growing practice has been to deploy such ML models on the user's device to reduce latency, maintain user privacy, and minimize continuous reliance on a centralized source. However, deploying ML models on the user's edge device can leak proprietary information about the service provider. In this work, we investigate on-device ML models that are used to provide mobile services and demonstrate how simple attacks can leak proprietary information of the service provider. We show that different adversaries can eas-ily exploit such models to maximize their profit and accomplish content theft. Motivated by the need to thwart such attacks, we present an end-to-end framework, SODA, for deploying and serving on edge devices while defending against adversarial usage. Our re-sults demonstrate that SODA can detect adversarial usage with 89% accuracy in less than 50 queries with minimal impact on service performance, latency, and storage.