2014 IEEE International Conference on Information Reuse and Integration (IRI)
Download PDF

Abstract

Semantic concept detection is among the most important and challenging topics in multimedia research. Its objective is to effectively identify high-level semantic concepts from low-level features for multimedia data analysis and management. In this paper, a novel re-ranking method is proposed based on correlation among concepts to automatically refine detection results and improve detection accuracy. Specifically, multiple correspondence analysis (MCA) is utilized to capture the relationship between a targeted concept and all other semantic concepts. Such relationship is then used as a transaction weight to refine detection ranking scores. To demonstrate its effectiveness in refining semantic concept detection, the proposed re-ranking method is applied to the detection scores of TRECVID 2011 benchmark data set, and its performance is compared with other state-of-the-art re-ranking approaches.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles