Abstract
The permutation flow shop scheduling problem (PFSSP) is well-applied in the industry, which is confirmed to be an NP-Hard optimization problem, and the objective is to find the minimum completion time (makespan). A modified coronavirus herd immunity optimizer (CHIO) with a modified solution update is suggested in this work. Meanwhile, the simulated annealing strategy is used on the updating herd immunity population to prevent trapping on local optima, and an adjusted state mechanism is involved to prevent fast state change/ convergence. Nine instances of different problem scales on the FPSSP dataset of Taillard were tested. The experimental results show that the proposed method can find the optimal solutions for the tested instances, with ARPDs no more than 0.1, indicating that the proposed method can effectively and stably solve the PFSSP.