Abstract
This paper proposes a new method for automated clustering of high dimensional datasets. The method is based on a recursive binary division strategy that successively divides an original dataset into distinct clusters. Each binary division is carried out using a model-free expectation maximization scheme that exploits the posterior probability computation capability of the quasi-supervised learning algorithm. The divisions are carried out until a division cost exceeds an adaptively determined limit. Experiment results on synthetic as well as real multi-color flow cytometry datasets showed that the proposed method can accurately capture the prominent clusters without requiring any knowledge on the number of clusters or their distribution models.