2006 14th Annual IEEE Symposium on Field Programmable Custom Computing Machines
Download PDF

Abstract

Supercomputer companies such as Cray, Silicon Graphics, and SRC Computers now offer reconfigurable computer (RC) systems that combine general-purpose processors (GPPs) with field-programmable gate arrays (FPGAs). The FPGAs can be programmed to become, in effect, application-specific processors. These exciting supercomputers allow end-users to create custom computing architectures aimed at the computationally intensive parts of each problem. This report describes a parameterized, parallelized, deeply pipelined, dual-FPGA, IEEE-754 64-bit floating-point design for accelerating the conjugate gradient (CG) iterative method on an FPGA-augmented RC. The FPGA-based elements are developed via a hybrid approach that uses a high-level language (HLL)-to-hardware description language (HDL) compiler in conjunction with custombuilt, VHDL-based, floating-point components. A reference version of the design is implemented on a contemporary RC. Actual run time performance data compare the FPGAaugmented CG to the software-only version and show that the FPGA-based version runs 1.3 times faster than the software version. Estimates show that the design can achieve a 4 fold speedup on a next-generation RC.
Like what you’re reading?
Already a member?
Get this article FREE with a new membership!

Related Articles