• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Profiles
  • Home
  • /Profiles

Yung-Hsiang Lu

2023-2025 Speaker

Featured ImageFeatured ImageYung-Hsiang Lu is a professor at the Elmore Family School of Electrical and Computer Engineering of Purdue University. He is a fellow of the IEEE (2021), ACM Distinguished Scientist (2013), and ACM Distinguished Speaker (2013). In 2015-2019, he was a co-founder and adviser of a technology startup that received SBIR-1 and SBIR-2 (Small Business Innovation Research). In 2020-2022, he was the director of the John Martinson Engineering Entrepreneurial Center at Purdue University. His research topics include efficient computer vision for embedded systems, cloud and mobile computing. He leads a research project analyzing real-time video streams from thousands of network cameras. He is the lead organizer of the IEEE Low-Power Computer Vision Challenge since 2015. He has published two books: Intermediate C Programming (ISBN 9781498711630) and Low-Power Computer Vision: Improve the Efficiency of Artificial Intelligence (editor, ISBN 9780367744700).

yunglu@purdue.edu

https://yhlu.net/

https://www.linkedin.com/in/yung-hsiang-lu-51842b22/

DVP term expires December 2025


Presentations

Title: Efficient Computer Vision for Embedded Systems

Since deep learning became popular a decade ago, computer vision has been adopted by a wide range of applications. Many applications must run on embedded systems with limited resources (energy, time, memory capacity, etc). This speech will survey methods designed to improve efficiency of computer vision, including quantization, architecture search, and trade-off between accuracy and speed. A new architecture called modular neural network is introduced. This architecture breaks a deep neural network into multiple shallower networks and can significantly reduce the sizes of machine models and execution time. A modular neural network is a tree-like structure to progressively analyze different features in images and divide images into different groups based on visual similarities. Modular neural networks can be used for image classification, object counting, and re-identification. This speech will also explain how to use contextual information to reduce computation for convolution. Context suggests where objects may appear. For example, a vehicle may appear on a road but not in the sky. The contextual information can reduce the search space in object detection and improve execution time.

World-Wide Camera Networks

More than 80% consumer Internet traffic is for videos and most of them are recorded videos. Meanwhile, many organizations (such as national parks, vacation resorts, departments of transportation) provide real-time visual data (images or videos). These videos allow Internet users to observe events remotely. This speech explains how to discover real-time visual data on the Internet. The discovery process uses a crawler to reach many web pages. The information on these web pages are analyzed to identify candidates of real-time data. The data is downloaded multiple times over an extended time period; changes are detected to determine whether it is likely to provide real-time data. The data can be used during an emergency. For example, viewers may check whether a street is flooded and cannot pass. It is also possible using the data to observe long-term trends, such as how people react to movement restrictions during the COVID pandemic.

Presentations
  • Efficient Computer Vision for Embedded Systems
  • World-Wide Camera Networks

 

LATEST NEWS
CV Template
CV Template
A History of Rendering the Future with Computer Graphics & Applications
A History of Rendering the Future with Computer Graphics & Applications
AI Assisted Identity Threat Detection and Zero Trust Access Enforcement
AI Assisted Identity Threat Detection and Zero Trust Access Enforcement
Resume Template
Resume Template
IEEE Reveals 2026 Predictions for Top Technology Trends 
IEEE Reveals 2026 Predictions for Top Technology Trends 
Read Next

CV Template

A History of Rendering the Future with Computer Graphics & Applications

AI Assisted Identity Threat Detection and Zero Trust Access Enforcement

Resume Template

IEEE Reveals 2026 Predictions for Top Technology Trends 

7 Best Practices for Secure Software Engineering in 2026

Muzeeb Mohammad: IEEE Computer Society Leader in Cloud Tech

Setting the Standard: How SWEBOK Helps Organizations Build Reliable and Future-Ready Teams

FacebookTwitterLinkedInInstagramYoutube
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter